Influencia de la temperatura de secado sobre la composición química de las semillas de Citrullus lanatus

Influencia de la temperatura de secado sobre la composición química de las semillas de Citrullus lanatus

Autores/as

Palabras clave:

análisis proximal, polifenoles totales, sandía

Resumen

Las semillas de Citrullus lanatus, han despertado un interés creciente debido a su perfil químico. Sin embargo, un factor crítico que puede alterar su composición y calidad es el proceso de secado. En este estudio se evaluó el impacto de la temperatura de secado sobre la composición química de las semillas de Citrullus lanatus. Las semillas se secaron a 30, 40 y 50°C durante 48 h. Se analizó el contenido de proteína (PC), grasa (GC), fibra (FC), cenizas totales (CT) y polifenoles totales (PT). Los resultados mostraron que el aumento de la temperatura resultó en una disminución significativa (p<0,05) del contenido de PC y GC. Las semillas secadas a 50°C presentaron el valor más bajo de PC (25,5±0,2%) y GC (42,6±0,1%). El contenido de FC aumentó con la temperatura, registrando valores de 22,2±0,1% a 30°C y 22,8±0,1% a 50°C. La CT no mostró diferencias significativas (p>0,05) entre las temperaturas de secado. El contenido de PT disminuyó (p<0,05) con el aumento de la temperatura, siendo el valor más alto (185,4±3,2 mg EAG/100g) el de las semillas tratadas 30°C. Estos resultados sugieren que, para conservar la calidad nutricional de las semillas de C. lanatus, es preferible utilizar temperaturas de secado bajas.

Referencias

Abasolo-Pacheco, F., Sellan-Canales, M. J., García-Gallirgos, V. J., & Onofre-Correa, J. A. (2025). Desarrollo vegetativo del maíz bajo influencia de diluciones minerales y biológicas. Revista Científica Zambos, 4(2), 265–280. https://doi.org/10.69484/rcz/v4/n2/121 DOI: https://doi.org/10.69484/rcz/v4/n2/121

Akl, E. M. (2023). Oilseeds Dietary Fiber and Their Health Benefits. Egyptian Journal of Chemistry, 66(9), 459–471. https://doi.org/10.21608/EJCHEM.2023.177503.7243 DOI: https://doi.org/10.21608/ejchem.2023.177503.7243

Al-Khalifa, A. S. (2019). Physicochemical characteristics, fatty acid composition, and lipoxygenase activity of crude pumpkin and melon seed oils. Journal of Agricultural and Food Chemistry, 44(4), 964–966. https://doi.org/10.1021/jf950519s DOI: https://doi.org/10.1021/jf950519s

AOAC, M. (2023). Official Methods of Analysis of AOAC INTERNATIONAL. Official Methods of Analysis of AOAC INTERNATIONAL. https://doi.org/10.1093/9780197610145.001.0001 DOI: https://doi.org/10.1093/9780197610145.001.0001

Benmeziane, F., & Derradji. (2023). Composition, bioactive potential and food applications of watermelon (citrullus lanatus) seeds – a review. Journal of Food Measurement and Characterization, 17(5), 5045–5061. https://doi.org/10.1007/S11694-023-02012-5/METRICS DOI: https://doi.org/10.1007/s11694-023-02012-5

Chacaguasay-Apugllon, E. N., Sánchez-Quiñonez, D. F., Gavilánez-Buñay, T. C., & Rivera-Toapanta, E. A. (2025). Concentración de fenoles totales y flavonoides en fabáceas forrajeras y arbustivas y uso como bioestimulante. Revista Científica Zambos, 4(1), 30–44. https://doi.org/10.69484/rcz/v4/n1/74 DOI: https://doi.org/10.69484/rcz/v4/n1/74

Gamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S., & ElMasry, G. (2023). Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy, 13(6), 1580. https://doi.org/10.3390/AGRONOMY13061580 DOI: https://doi.org/10.3390/agronomy13061580

Gift-Madubuochi, W., & Faith C., M. (2024). Assessment of Crude Oil Extract from Citrullus lanatus (Water Melon) for Pharmaceutical Application. International Journal of Innovative Science and Research Technology (IJISRT), 2499–2503. https://doi.org/10.38124/IJISRT/IJISRT24AUG1517 DOI: https://doi.org/10.38124/ijisrt/IJISRT24AUG1517

Huang, Y., Lu, M., Wu, H., Zhao, T., Wu, P., & Cao, D. (2021). High Drying Temperature Accelerates Sunflower Seed Deterioration by Regulating the Fatty Acid Metabolism, Glycometabolism, and Abscisic Acid/Gibberellin Balance. Frontiers in Plant Science, 12, 628251. https://doi.org/10.3389/FPLS.2021.628251/BIBTEX DOI: https://doi.org/10.3389/fpls.2021.628251

Idris, S. A., Rashidi, A. R., Muhammad, A., Abdullah, M., Elham, O. S. J., & Mamat, M. S. (2017). Composition, physical properties and drying characteristics of seed oil of Citrullus lanatus. AIP Conference Proceedings, 1885(1). https://doi.org/10.1063/1.5002419/886396 DOI: https://doi.org/10.1063/1.5002419

Leite, F., Queiroz, M., de Figueirêdo, F., Dos Santos, S., Silva, N., & Santos, C. (2021). Mathematical modeling and thermodynamic properties in the drying of citron watermelon seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(1), 67–74. https://doi.org/10.1590/1807-1929/AGRIAMBI.V26N1P67-74 DOI: https://doi.org/10.1590/1807-1929/agriambi.v26n1p67-74

Liu, Z., Wu, S., Zuo, H., Lin, J., Zheng, H., Lei, H., Yu, Q., Wu, X., & Guo, Z. (2023). Freeze-drying pretreatment of watermelon peel to improve the efficiency of pectin extraction: RSM optimization, extraction mechanism, and characterization. International Journal of Biological Macromolecules, 249, 125944. https://doi.org/10.1016/J.IJBIOMAC.2023.125944 DOI: https://doi.org/10.1016/j.ijbiomac.2023.125944

Luna-Fox, S. B., García-Quintana, Y., Artega-Crespo, Y., & Radice, M. (2025). Formulation of lyophilized products rich in polyphenols from Hibiscus sabdariffa and its combination with Ocotea quixos and Citrus aurantifolia. Revista Chilena de Nutricion, 52(1), 31–42. https://doi.org/10.4067/S0717-75182025000100031 DOI: https://doi.org/10.4067/s0717-75182025000100031

Masoko, P., Matotoka, M. M., & Mphosi, M. S. (2022). Phytochemical analysis and antibacterial activity of Citrullus lanatus var. citroides (Citron watermelon) fruit and the effect of temperature on the biological activity of the rind. South African Journal of Botany, 150, 1111–1121. https://doi.org/10.1016/J.SAJB.2022.09.024 DOI: https://doi.org/10.1016/j.sajb.2022.09.024

Milala, M. A., Luther, A., & Burah, B. (2018). Nutritional Comparison of Processed and Unprocessed Citrillus lanatus (Watermelon) Seeds for Possible Use in Feed Formulation. American Journal of Food and Nutrition, 6(2), 33–36. https://doi.org/10.12691/AJFN-6-2-1 DOI: https://doi.org/10.12691/ajfn-6-2-1

Nantanga, K. K. M., & Embashu, W. (2024). Climate smart Kalahari melon (Citrullus lanatus): understanding its seeds hydration kinetics. Transactions of the Royal Society of South Africa, 79(1), 47–50. https://doi.org/10.1080/0035919X.2024.2302627 DOI: https://doi.org/10.1080/0035919X.2024.2302627

Okunrobo, L. O., Imafidon, K. E., & Alabi, A. A. (2020). Phytochemical, proximate and metal content analysis of the leaves of Psidium guajava Linn (Myrtaceae). International Journal of Health Research, 3(4), 217–221. https://doi.org/10.4314/ijhr.v3i4.70426 DOI: https://doi.org/10.4314/ijhr.v3i4.70426

Oliveira, R. M., Andrade, K. S., do Prado, M. M., & Marques, L. G. (2020). Study on Hybrid Drying with Infrared Radiation of Watermelon Seeds (Citrullus Lanatus). Defect and Diffusion Forum, 399, 173–182. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/DDF.399.173 DOI: https://doi.org/10.4028/www.scientific.net/DDF.399.173

Osae, B. A., Liu, S., Amanullah, S., Gao, P., Fan, C., Wan, Y., Pei, S., & Luan, F. (2021). Assessment on seed oil percentage and physicochemical properties of watermelon (Citrullus lanatus). Rivista Italiana Delle Sostanze Grasse, 98(3), 217–222. https://www.innovhub-ssi.it/kdocs/2021189/2021_vol._983_-_art._06_-_osae.pdf

Osinubi, A. D., Banjoko, O. O., Anselm, O. H., Akinrinola, O. M., & Osofodunrin, A. (2020). Comparative Effects of Drying Methods on Phytochemical Contents and Anti-Microbial Activities of Watermelon (Citrullus Lanatus) Seed and Rind. Journal of Chemical Society of Nigeria, 45(1), 70–78. http://www.journals.chemsociety.org.ng/index.php/jcsn/article/view/426

Philippe, E. K., Bertin, Y. K., Martin, D. K., & Georges, A. N. (2024). Effect of Fruit Harvest Time on the Nutritional and Agronomic Quality of Oleaginous Citrullus lanatus Seeds. International Journal of Biochemistry Research & Review, 33(5), 79–90. https://doi.org/10.9734/IJBCRR/2024/V33I5878 DOI: https://doi.org/10.9734/ijbcrr/2024/v33i5878

Sadiq, I. S., Saminu, M. Y., Zainab, L., Adeleye, A. O., Sanni, L. E., & Dandalma, Z. A. (2021). Proximate analysis and phytochemical screening of watermelon (citrullus lanatus) pulp, peels and seeds. Dutse Journal of Pure and Applied Sciences, 7(4a), 174–182. https://doi.org/10.4314/DUJOPAS.V7I4A.18 DOI: https://doi.org/10.4314/dujopas.v7i4a.18

Saeed, F., Afzaal, M., Niaz, B., Hussain, M., Rasheed, A., Raza, M. A., Umar, M., Khan, M. A., Suleria, H., Tufail, T., & Al Jbawi, E. (2023). Comparative study of nutritional composition, antioxidant activity and functional properties of Cucumis melo and Citrullus lanatus seeds powder. Cogent Food and Agriculture, 10(1). https://doi.org/10.1080/23311932.2023.2293517 DOI: https://doi.org/10.1080/23311932.2023.2293517

Siqueira, V. C., Mabasso, G. A., Quequeto, W. D., Silva, C. R. da, Martins, E. A. S., & Isquierdo, E. P. (2020). Drying kinetics and effective diffusion of watermelon seeds. Research, Society and Development, 9(4), e16942887–e16942887. https://doi.org/10.33448/RSD-V9I4.2887 DOI: https://doi.org/10.33448/rsd-v9i4.2887

Sulieman, A. M. E., & Ibrahim, S. E. (2022). Antioxidant and pharmacological activity of watermelon (Citrullus lanatus) seed oil. Multiple Biological Activities of Unconventional Seed Oils, 185–194. https://doi.org/10.1016/B978-0-12-824135-6.00027-1 DOI: https://doi.org/10.1016/B978-0-12-824135-6.00027-1

Tahmasebi, M., Gundoshmian, T. M., Roshanianfard, A., Akbari, R., Agdam, B. R., & Nowacka, M. (2025). Modeling and Optimization of Quality Properties of Lentils During the Hot Air Drying Process Utilizing the Response Surface Methodology (RSM). Heat Transfer. https://doi.org/10.1002/HTJ.23371 DOI: https://doi.org/10.1002/htj.23371

Thamer-Abdulaziz, N., Fakri-Mustafa, Y., & Khajeh, K. (2022). The Effect of Heat Variable on the Chemical Composition and Bioactivities of a Citrullus lanatus Seed Aqueous Extracts. Journal of Medicinal and Chemical Sciences, 5(7), 1166–1176. https://doi.org/10.26655/JMCHEMSCI.2022.7.4 DOI: https://doi.org/10.26655/JMCHEMSCI.2022.7.4

Zalazar-Garcia, D., Román, M. C., Fernandez, A., Asensio, D., Zhang, X., Fabani, M. P., Rodriguez, R., & Mazza, G. (2022). Exergy, energy, and sustainability assessments applied to RSM optimization of integrated convective air-drying with pretreatments to improve the nutritional quality of pumpkin seeds. Sustainable Energy Technologies and Assessments, 49, 101763. https://doi.org/10.1016/J.SETA.2021.101763 DOI: https://doi.org/10.1016/j.seta.2021.101763

Zarıfıkhosroshahı, M., & Ergun, Z. (2021). The Effect of Storage Temperature on the Composition of Fatty Acids in Crimson Sweet (Citrullus lanatus var. lanatus) Watermelon Cultivar Seeds. Journal of the Institute of Science and Technology, 11(2), 839–845. https://doi.org/10.21597/JIST.830878 DOI: https://doi.org/10.21597/jist.830878

Descargas

Publicado

2025-09-30

Cómo citar

Hidalgo-Sánchez, M. A., Pérez-Cuesta, A. M., Benalcázar-Boada, M. J., & Peñafiel-Bonilla, N. J. (2025). Influencia de la temperatura de secado sobre la composición química de las semillas de Citrullus lanatus. Revista Científica Zambos, 4(3), 108-121. https://doi.org/10.69484/rcz/v4/n3/133

Cómo citar

Hidalgo-Sánchez, M. A., Pérez-Cuesta, A. M., Benalcázar-Boada, M. J., & Peñafiel-Bonilla, N. J. (2025). Influencia de la temperatura de secado sobre la composición química de las semillas de Citrullus lanatus. Revista Científica Zambos, 4(3), 108-121. https://doi.org/10.69484/rcz/v4/n3/133

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 7 8 9 10 > >> 

Artículos similares

1-10 de 98

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Loading...